

Holemaking Solutions for Today's Manufacturing

Reaming

Burnishing

Threading

Indexable Insert Drilling System

SECTION A TO

Opening Drill®

Opening Drill®

Large Diameter Replaceable IC Insert Drilling System

▶ Diameter Range: 2.000" - 5.620" (50.80 mm - 142.75 mm)

Need larger holes? No problem.

The Opening Drill is an extremely effective tool designed to enlarge existing holes. It is available in nine different shank styles: Straight, ABS 63, CAT V40, CAT V50, HSK 63A/C, HSK 100A/C, BT 40, BT 50, and DIN50.

In a single operation, an existing hole can be opened and large amounts of material can be removed. The insert design reduces chip size and improves evacuation. Also, inventory and cost are reduced by the adjustable diameters.

Excellent chip control.

Improves hole quality and surface finish.

Provides maximum durability and stability.

Applicable Industries

Firearms

Renewable Energy

Your safety and the safety of others is very important. This catalog contains important safety messages. Always read and follow all safety precautions.

This triangle is a safety hazard symbol. It alerts you to potential safety hazards that can cause tool failure and serious injury.

When you see this symbol in the catalog, look for a related safety message that may be near this triangle or referred to in the nearby text.

There are safety signal words also used in the catalog. Safety messages follow these words.

⚠ WARNING

WARNING (shown above) means that failure to follow the precautions in this message could result in tool failure and serious injury.

NOTICE means that failure to follow the precautions in this message could result in damage to the tool or machine but not result in personal injury.

NOTE and IMPORTANT are also used. These are important that you read and follow but are not safety-related.

Visit www.alliedmachine.com for the most up-to-date information and procedures.

Reference Icons

The following icons will appear throughout the catalog to help you navigate between products.

Setup / Assembly Information

Detailed instructions and information regarding the corresponding part(s)

Recommended Cutting Data

Speed and feed recommendations for optimum and safe drilling

Coolant-Through Option

Indicates that the product is coolant through

		Diamete	er Range
	Series	Imperial (inch)	Metric (mm)
Г	OP1	2.000 - 2.500	50.80 - 63.50
	OP2	2.500 - 3.000	63.50 - 76.20
Г	OP3	3.000 - 4.120	76.20 - 104.65
Г	OP4	4 120 - 5 620	104 65 - 142 75

Opening Drill® Contents

Introduction Information Product Nomenclature. 4 - 5 **Drill Shank Style** Straight Imperial 6 **Recommended Cutting Data** Imperial (inch) 16 - 17 Metric (mm) 18 - 19

В

C

Product Overview

Features

- Can be used as a rotating or stationary tool.
- Can be used in rough boring operations.
- Available in multiple different shanks (see chart below).
- Smooth cutting action and quiet operations in lathes and mills.
- Special lengths, diameters, and shanks are available upon request.

Advantages

- Opens an existing hole in a single operation.
- Ignores core shifts up to 1/8" (3.18 mm) providing straight and true holes without the need for boring.
- · Allows for large amounts of material removal.
- Unique design enables larger holes to be made on low horsepower machines.
- · Replaceable cartridges protect your investment.
- Adjustable diameters reduce inventory and cost.

TiN

T

2 Inserts (OP1 - OP3 series)

3 Inserts (OP4 series)

Insert Application Recommendations

Carbide Grad	Carbide Grade Options								
C5 (P35)	General purpose carbide grade suitable for most applications. Common application in steels and stainless steels.								
C1 (K35)	Toughest carbide grade. Provides the best combination of edge strength and tool life. **Recommended for less rigid applications.**								
C2 (K25)	Higher wear-resistant carbide suitable for abrasive material applications. Recommended for grey, ductile, and nodular irons.								

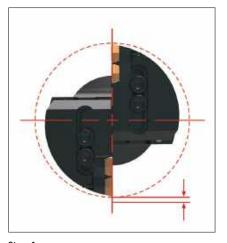
Additional Geometry Option

High Rake (HR) Provides superior chip control and tool life in long chipping carbon and alloy steels below 200 BHN.

- The design allows for excellent chip control and aggressive penetration rates.
- The proprietary AM200® and AM300® coatings increase tool life above competitors' premium coatings.
- The same inserts are used for both Revolution Drill and Opening Drill products.

Χ

Setup Instructions


Step 1: Loosen the mounting screws on both cartridges.

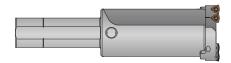
Step 2:Set one cartridge to the finish diameter by tightening the adjustment screw against the adjustment pin.

Step 3: Tighten the mounting screws on the cartridge to 11-14 ft-lbf (15-19 N-m).

Step 4:
Set the opposing cartridge with 0.160"
(4.06 mm) to 0.200" (5.08 mm) radial offset inward by tightening the adjustment screw against the adjustment pin (optimum situation for each insert to remove equal material).

Step 5: Tighten the mounting screws on the cartridge to 11-14 ft-lbf (15-19 N-m).

Straight Shanks


- Designed for lathe applications.
- Can be cut off for use in endmill holders.
- The score mark (circled above) is provided for recommended cut length.
- Cut and deburr at the score mark.
- This improves rigidity when the body sits against the face of an endmill holder.

C

Product Nomenclature

Opening Drill Holders

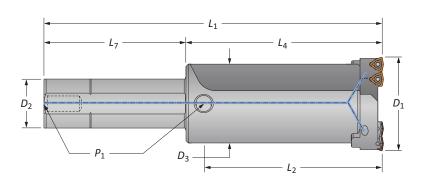
OP1 = 2.000" - 2.500" (50.80 mm - 63.50 mm)

OP2 = 2.500" - 3.000" (63.50 mm - 76.20 mm)

OP3 = 3.000" - 4.120" (76.20 mm - 104.65 mm)

OP4 = 4.120" - 5.620" (104.65 mm - 142.75 mm)

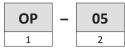
2. Length


1S = Short

1L = Long

3. Shank Type	
SS1.5 = 1-1/2 Ø straight	BT40 = BT40
SS2.0 = 2 Ø straight	BT50 = BT50
40M = 40 mm straight	HSK63 = HSK 63A/C
50M = 50 mm straight	HSK100 = HSK 100A/C
CV40 = CAT40	ABS63 = ABS63
CV50 = CAT50	DV50 = DIN50

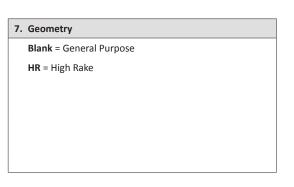
Reference Key


Symbol	Attribute
D_1	Drill diameter range
D ₂ Shank diameter	
<i>D</i> ₃	Body diameter
<i>L</i> ₁	Overall length
L ₂	Maximum drill depth
L ₄	Holder length
L ₇	Shank length
P_1	Rear pipe tap

Χ

Product Nomenclature

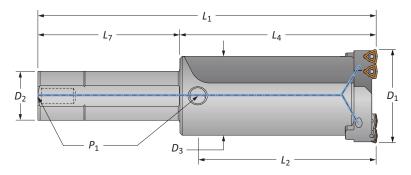
Opening Drill Inserts


1. Compatible with:

Opening Drill®

Revolution Drill®

5.	Carbide Grade
	Blank = C5 (P35)
	1 = C1 (K35)
	2 = C2 (K25)


6. Coating P = AM300® H = AM200® T = TiN A = TiAlN N = TiCN U = Uncoated

Straight Shank | Imperial | Diameter Range: 2.000" - 5.620" (50.80 mm - 142.75 mm)

Holders

				Holder		Shank					
	Length	D ₁ Range	D ₃	L ₂	L ₄	<i>L</i> ₁	D ₂	L ₇	P ₁	Part No.	Cartridges
	Short	2.000 - 2.500	1.840	3-9/32	4-3/64	8-3/64	1-1/2	4	1/4 NPT	OP1-1S-SS1.5	OP1-WC05
	Long	2.000 - 2.500	1.840	5-17/32	6-19/64	10-19/64	1-1/2	4	1/4 NPT	OP1-1L-SS1.5	OP1-WC05
	Short	2.500 - 3.000	2.220	4-43/64	5-1/2	9-1/2	1-1/2	4	1/4 NPT	OP2-1S-SS1.5	OP2-WC05
0	Long	2.500 - 3.000	2.220	7-43/64	8-1/2	12-1/2	1-1/2	4	1/4 NPT	OP2-1L-SS1.5	OP2-WC05
U	Short	3.000 - 4.120	2.806	5-7/64	6	10	1-1/2	4	1/4 NPT	OP3-1S-SS1.5	OP3-WC05
	Long	3.000 - 4.120	2.806	9-7/64	10	14	1-1/2	4	1/4 NPT	OP3-1L-SS1.5	OP3-WC05
	Short	4.120 - 5.620	3.500	5-1/64	6	10-1/2	2	4-1/2	1/4 NPT	OP4-1S-SS2.0	OP4-WC05
	Long	4.120 - 5.620	3.500	10-33/64	11-1/2	16	2	4-1/2	1/4 NPT	OP4-1L-SS2.0	OP4-WC05

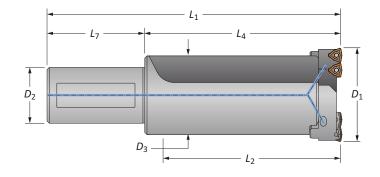
^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Key Size	Adjusting Screw	Driver
OP1-WC05	2	MS-13M-1	5 mm	AS-10T9-1	8T-9
OP2-WC05	2	MS-15M-1	5 mm	AS-10T9-1	8T-9
OP3-WC05	2	MS-15M-1	5 mm	AS-12T9-1	8T-9
OP4-WC05	3	MS-15M-1	5 mm	AS-14T9-1	8T-9

Carbide					Insert	
Grade	Geometry	AM300®	AM200®	TiN	Screws*	Driver
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1	8T-9
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1	8T-9
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	-	IS-10-1	8T-9
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1	8T-9

^{*}Admissible Tightening Torque: 15.5 in-lbs (175 N-cm). Tightening torques are calculated with a friction coefficient of μ = 0.14 and develop 90% of ultimate yield strength.


THREADING

Opening Drill Holders

Straight Shank | Metric | Diameter Range: 2.000" - 5.620" (50.80 mm - 142.75 mm)

Holders

				Но	lder		Shank				
	Length	D ₁ Range	D ₃	L ₂	L ₄	<i>L</i> ₁	D ₂	L ₇	P_1	Part No.	Cartridges
	Short	50.80 - 63.50	46.74	83.46	104.44	174.45	40.00	70.00	-	OP1-1S-40M	OP1-WC05
	Long	50.80 - 63.50	46.74	140.61	161.59	231.60	40.00	70.00	-	OP1-1L-40M	OP1-WC05
	Short	63.50 - 76.20	56.39	118.52	141.25	211.25	40.00	70.00	-	OP2-1S-40M	OP2-WC05
@	Long	63.50 - 76.20	56.39	194.72	217.45	287.45	40.00	70.00	ı	OP2-1L-40M	OP2-WC05
w	Short	76.20 - 104.65	71.27	129.90	153.95	223.95	40.00	70.00	-	OP3-1S-40M	OP3-WC05
	Long	76.20 - 104.65	71.27	231.50	255.55	325.55	40.00	70.00	ı	OP3-1L-40M	OP3-WC05
	Short	104.65 - 142.65	88.90	127.43	153.95	233.96	50.00	80.00	-	OP4-1S-50M	OP4-WC05
	Long	104.65 - 142.65	88.90	267.13	293.65	373.66	50.00	80.00	-	OP4-1L-50M	OP4-WC05

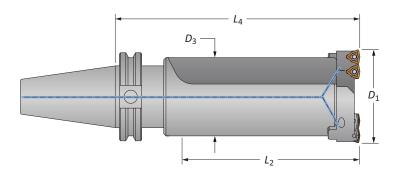
^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Key Size	Adjusting Screw	Driver
OP1-WC05	2	MS-13M-1	5 mm	AS-10T9-1	8T-9
OP2-WC05	2	MS-15M-1	5 mm	AS-10T9-1	8T-9
OP3-WC05	2	MS-15M-1	5 mm	AS-12T9-1	8T-9
OP4-WC05	3	MS-15M-1	5 mm	AS-14T9-1	8T-9

Carbide					Insert	
Grade	Geometry	AM300®	AM200®	TiN	Screws*	Driver
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1	8T-9
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1	8T-9
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	_	IS-10-1	8T-9
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1	8T-9

^{*}Admissible Tightening Torque: 15.5 in-lbs (175 N-cm). Tightening torques are calculated with a friction coefficient of μ = 0.14 and develop 90% of ultimate yield strength.



Opening Drill Holders

CAT40 Shank | Diameter Range: 2.000" - 5.620" (50.80 mm - 142.75 mm)

Holders

				Holder			
	Length	D ₁ Range	D_3	L ₂	L ₄	Part No.	Cartridges
	Short	2.000 - 2.500	1.840	3-9/32	5-27/64	OP1-1S-CV40	OP1-WC05
	Long	2.000 - 2.500	1.840	5-17/32	7-43/64	OP1-1L-CV40	OP1-WC05
	Short	2.500 - 3.000	2.220	4-43/64	6-7/8	OP2-1S-CV40	OP2-WC05
0	Long	2.500 - 3.000	2.220	7-43/64	9-7/8	OP2-1L-CV40	OP2-WC05
	Short	3.000 - 4.120	2.806	5-7/64	7-3/8	OP3-1S-CV40	OP3-WC05
	Long	3.000 - 4.120	2.806	9-7/64	11-3/8	OP3-1L-CV40	OP3-WC05
	Short	4.120 - 5.620	3.500	5-1/64	7-3/8	OP4-1S-CV40	OP4-WC05

^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Key Size	Adjusting Screw	Driver
OP1-WC05	2	MS-13M-1	5 mm	AS-10T9-1	8T-9
OP2-WC05	2	MS-15M-1	5 mm	AS-10T9-1	8T-9
OP3-WC05	2	MS-15M-1	5 mm	AS-12T9-1	8T-9
OP4-WC05	3	MS-15M-1	5 mm	AS-14T9-1	8T-9

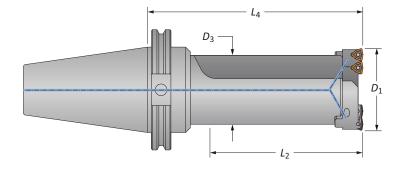
IC Inserts

Carbide					Insert	
Grade	Geometry	AM300®	AM200®	TiN	Screws*	Driver
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1	8T-9
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1	8T-9
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	-	IS-10-1	8T-9
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1	8T-9

^{*}Admissible Tightening Torque: 15.5 in-lbs (175 N-cm). Tightening torques are calculated with a friction coefficient of μ = 0.14 and develop 90% of ultimate yield strength.

1 = Imperial (in)

m = Metric (mm)


D

Χ

CAT50 Shank | Diameter Range: 2.000" - 5.620" (50.80 mm - 142.75 mm)

Holders

			Holder				
	Length	D ₁ Range	D_3	L ₂	L ₄	Part No.	Cartridges
	Short	2.000 - 2.500	1.840	3-9/32	5-27/64	OP1-1S-CV50	OP1-WC05
	Long	2.000 - 2.500	1.840	5-17/32	7-43/64	OP1-1L-CV50	OP1-WC05
	Short	2.500 - 3.000	2.220	4-43/64	6-7/8	OP2-1S-CV50	OP2-WC05
0	Long	2.500 - 3.000	2.220	7-43/64	9-7/8	OP2-1L-CV50	OP2-WC05
U	Short	3.000 - 4.120	2.806	5-7/64	7-3/8	OP3-1S-CV50	OP3-WC05
	Long	3.000 - 4.120	2.806	9-7/64	11-3/8	OP3-1L-CV50	OP3-WC05
	Short	4.120 - 5.620	3.500	5-1/64	7-3/8	OP4-1S-CV50	OP4-WC05
	Long	4.120 - 5.620	3.500	10-33/64	12-7/8	OP4-1L-CV50	OP4-WC05

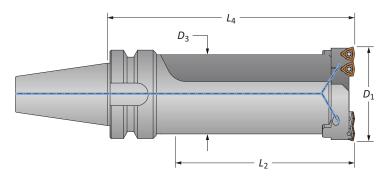
^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Key Size	Adjusting Screw	Driver
OP1-WC05	2	MS-13M-1	5 mm	AS-10T9-1	8T-9
OP2-WC05	2	MS-15M-1	5 mm	AS-10T9-1	8T-9
OP3-WC05	2	MS-15M-1	5 mm	AS-12T9-1	8T-9
OP4-WC05	3	MS-15M-1	5 mm	AS-14T9-1	8T-9

			Part No.				
Carbide					Insert		
Grade	Geometry	AM300®	AM200®	TiN	Screws*	Driver	
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1	8T-9	
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1	8T-9	
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	-	IS-10-1	8T-9	
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1	8T-9	

^{*}Admissible Tightening Torque: 15.5 in-lbs (175 N-cm). Tightening torques are calculated with a friction coefficient of μ = 0.14 and develop 90% of ultimate yield strength.



Opening Drill Holders

BT40 Shank | Diameter Range: 2.000" - 5.620" (50.80 mm - 142.75 mm)

Holders

				Holder			
	Length	D ₁ Range	D_3	L ₂	L ₄	Part No.	Cartridges
	Short	50.80 - 63.50	46.74	83.46	137.85	OP1-1S-BT40	OP1-WC05
	Long	50.80 - 63.50	46.74	140.61	195.00	OP1-1L-BT40	OP1-WC05
	Short	63.50 - 76.20	56.39	118.52	174.68	OP2-1S-BT40	OP2-WC05
(1)	Long	63.50 - 76.20	56.39	194.72	250.88	OP2-1L-BT40	OP2-WC05
	Short	76.20 - 104.65	71.27	129.90	187.38	OP3-1S-BT40	OP3-WC05
	Long	76.20 - 104.65	71.27	231.50	288.98	OP3-1L-BT40	OP3-WC05
	Short	104.65 - 142.75	88.90	127.43	187.38	OP4-1S-BT40	OP4-WC05

^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Key Size	Adjusting Screw	Driver
OP1-WC05	2	MS-13M-1	5 mm	AS-10T9-1	8T-9
OP2-WC05	2	MS-15M-1	5 mm	AS-10T9-1	8T-9
OP3-WC05	2	MS-15M-1	5 mm	AS-12T9-1	8T-9
OP4-WC05	3	MS-15M-1	5 mm	AS-14T9-1	8T-9

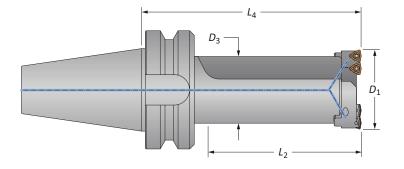
IC Inserts

Carbide					Insert	
Grade	Geometry	AM300®	AM200®	TiN	Screws*	Driver
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1	8T-9
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1	8T-9
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	-	IS-10-1	8T-9
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1	8T-9

^{*}Admissible Tightening Torque: 15.5 in-lbs (175 N-cm). Tightening torques are calculated with a friction coefficient of μ = 0.14 and develop 90% of ultimate yield strength.

1 = Imperial (in)

C


Е

Χ

Opening Drill Holders

BT50 Shank | Diameter Range: 2.000" - 5.620" (50.80 mm - 142.75 mm)

Holders

			Holder				
	Length	D ₁ Range	D_3	L ₂	L ₄	Part No.	Cartridges
	Short	50.80 - 63.50	46.74	83.46	147.37	OP1-1S-BT50	OP1-WC05
	Long	50.80 - 63.50	46.74	140.61	204.52	OP1-1L-BT50	OP1-WC05
	Short	63.50 - 76.20	56.39	118.52	184.20	OP2-1S-BT50	OP2-WC05
@	Long	63.50 - 76.20	56.39	194.72	260.40	OP2-1L-BT50	OP2-WC05
•	Short	76.20 - 104.65	71.27	129.90	196.90	OP3-1S-BT50	OP3-WC05
	Long	76.20 - 104.65	71.27	231.50	298.50	OP3-1L-BT50	OP3-WC05
	Short	104.65 - 142.75	88.90	127.43	196.90	OP4-1S-BT50	OP4-WC05
	Long	104.65 - 142.75	88.90	267.13	336.60	OP4-1L-BT50	OP4-WC05

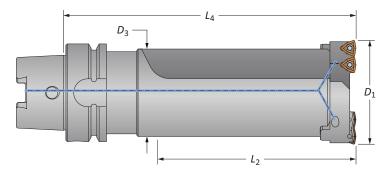
^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Key Size	Adjusting Screw	Driver
OP1-WC05	2	MS-13M-1	5 mm	AS-10T9-1	8T-9
OP2-WC05	2	MS-15M-1	5 mm	AS-10T9-1	8T-9
OP3-WC05	2	MS-15M-1	5 mm	AS-12T9-1	8T-9
OP4-WC05	3	MS-15M-1	5 mm	AS-14T9-1	8T-9

			Part No.				
Carbide					Insert		
Grade	Geometry	AM300®	AM200®	TiN	Screws*	Driver	
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1	8T-9	
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1	8T-9	
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	_	IS-10-1	8T-9	
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1	8T-9	

^{*}Admissible Tightening Torque: 15.5 in-lbs (175 N-cm). Tightening torques are calculated with a friction coefficient of μ = 0.14 and develop 90% of ultimate yield strength.

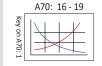

 C

Opening Drill Holders

HSK63 Shank | Diameter Range: 2.000" - 5.620" (50.80 mm - 142.75 mm)

Holders

				Holder			
	Length	D ₁ Range	<i>D</i> ₃	L ₂	L ₄	Part No.	Cartridges
	Short	2.000 - 2.500	1.840	3-9/32	5-59/64	OP1-1S-HSK63	OP1-WC05
	Long	2.000 - 2.500	1.840	5-17/32	8-11/64	OP1-1L-HSK63	OP1-WC05
	Short	2.500 - 3.000	2.220	4-43/64	7-3/8	OP2-1S-HSK63	OP2-WC05
0	Long	2.500 - 3.000	2.220	7-43/64	10-3/8	OP2-1L-HSK63	OP2-WC05
	Short	3.000 - 4.120	2.806	5-7/64	7-7/8	OP3-1S-HSK63	OP3-WC05
	Long	3.000 - 4.120	2.806	9-7/64	11-7/8	OP3-1L-HSK63	OP3-WC05
	Short	4.120 - 5.620	3.500	5-1/64	7-7/8	OP4-1S-HSK63	OP4-WC05


^{*}Holder includes cartridges; however, inserts are sold separately.

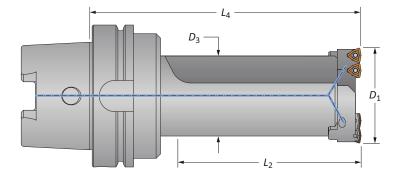
Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Key Size	Adjusting Screw	Driver
OP1-WC05	2	MS-13M-1	5 mm	AS-10T9-1	8T-9
OP2-WC05	2	MS-15M-1	5 mm	AS-10T9-1	8T-9
OP3-WC05	2	MS-15M-1	5 mm	AS-12T9-1	8T-9
OP4-WC05	3	MS-15M-1	5 mm	AS-14T9-1	8T-9

Carbide					Insert	
Grade	Geometry	AM300®	AM200®	TiN	Screws*	Driver
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1	8T-9
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1	8T-9
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	-	IS-10-1	8T-9
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1	8T-9

^{*}Admissible Tightening Torque: 15.5 in-lbs (175 N-cm). Tightening torques are calculated with a friction coefficient of μ = 0.14 and develop 90% of ultimate yield strength.

C


Е

Χ

Opening Drill Holders

HSK100 Shank | Diameter Range: 2.000" - 5.620" (50.80 mm - 142.75 mm)

Holders

			Holder				
	Length	D ₁ Range	D ₃	L ₂	L ₄	Part No.	Cartridges
	Short	2.000 - 2.500	1.840	3-9/32	6-1/64	OP1-1S-HSK100	OP1-WC05
	Long	2.000 - 2.500	1.840	5-17/32	8-17/64	OP1-1L-HSK100	OP1-WC05
	Short	2.500 - 3.000	2.220	4-43/64	7-15/32	OP2-1S-HSK100	OP2-WC05
0	Long	2.500 - 3.000	2.220	7-43/64	10-15/32	OP2-1L-HSK100	OP2-WC05
U	Short	3.000 - 4.120	2.806	5-7/64	7-31/32	OP3-1S-HSK100	OP3-WC05
	Long	3.000 - 4.120	2.806	9-7/64	11-31/32	OP3-1L-HSK100	OP3-WC05
	Short	4.120 - 5.620	3.500	5-1/64	7-31/32	OP4-1S-HSK100	OP4-WC05
	Long	4.120 - 5.620	3.500	10-33/64	13-15/32	OP4-1L-HSK100	OP4-WC05

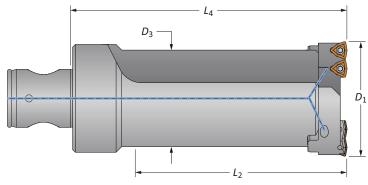
^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Key Size	Adjusting Screw	Driver
OP1-WC05	2	MS-13M-1	5 mm	AS-10T9-1	8T-9
OP2-WC05	2	MS-15M-1	5 mm	AS-10T9-1	8T-9
OP3-WC05	2	MS-15M-1	5 mm	AS-12T9-1	8T-9
OP4-WC05	3	MS-15M-1	5 mm	AS-14T9-1	8T-9

			Part No.				
Carbide					Insert		
Grade	Geometry	AM300®	AM200®	TiN	Screws*	Driver	
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1	8T-9	
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1	8T-9	
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	_	IS-10-1	8T-9	
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	-	IS-10-1	8T-9	

^{*}Admissible Tightening Torque: 15.5 in-lbs (175 N-cm). Tightening torques are calculated with a friction coefficient of μ = 0.14 and develop 90% of ultimate yield strength.



Opening Drill Holders

ABS63 Shank | Diameter Range: 2.000" - 5.620" (50.80 mm - 142.75 mm)

Holders

			Holder				
	Length	D ₁ Range	D_3	L ₂	L ₄	Part No.	Cartridges
	Short	2.000 - 2.500	1.840	3-9/32	5-1/2	OP1-1S-ABS63	OP1-WC05
	Long	2.000 - 2.500	1.840	5-17/32	7-3/4	OP1-1L-ABS63	OP1-WC05
	Short	2.500 - 3.000	2.220	4-43/64	6-1/4	OP2-1S-ABS63	OP2-WC05
0	Long	2.500 - 3.000	2.220	7-43/64	9-1/4	OP2-1L-ABS63	OP2-WC05
	Short	3.000 - 4.120	2.806	5-7/64	6-3/4	OP3-1S-ABS63	OP3-WC05
	Long	3.000 - 4.120	2.806	9-7/64	10-3/4	OP3-1L-ABS63	OP3-WC05
	Short	4.120 - 5.620	3.500	5-1/64	6-3/4	OP4-1S-ABS63	OP4-WC05

^{*}Holder includes cartridges; however, inserts are sold separately.

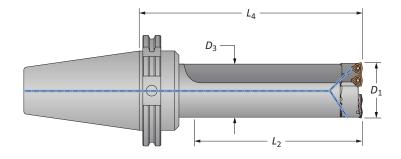
Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Key Size	Adjusting Screw	Driver
OP1-WC05	2	MS-13M-1	5 mm	AS-10T9-1	8T-9
OP2-WC05	2	MS-15M-1	5 mm	AS-10T9-1	8T-9
OP3-WC05	2	MS-15M-1	5 mm	AS-12T9-1	8T-9
OP4-WC05	3	MS-15M-1	5 mm	AS-14T9-1	8T-9

Carbide					Insert	
Grade	Geometry	AM300®	AM200®	TiN	Screws*	Driver
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1	8T-9
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1	8T-9
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	-	IS-10-1	8T-9
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	_	IS-10-1	8T-9

^{*}Admissible Tightening Torque: 15.5 in-lbs (175 N-cm). Tightening torques are calculated with a friction coefficient of μ = 0.14 and develop 90% of ultimate yield strength.

C


Е

Χ

Opening Drill Holders

DIN50 Shank | Diameter Range: 2.000" - 5.620" (50.80 mm - 142.75 mm)

Holders

			Holder				
	Length	D ₁ Range	D_3	L ₂	L ₄	Part No.	Cartridges
	Short	50.80 - 63.50	46.74	83.46	137.92	OP1-1S-DV50	OP1-WC05
	Long	50.80 - 63.50	46.74	140.61	195.07	OP1-1L-DV50	OP1-WC05
	Short	63.50 - 76.20	56.39	118.52	174.75	OP2-1S-DV50	OP2-WC05
a	Long	63.50 - 76.20	56.39	194.72	250.95	OP2-1L-DV50	OP2-WC05
w	Short	76.20 - 104.65	71.27	129.90	187.45	OP3-1S-DV50	OP3-WC05
	Long	76.20 - 104.65	71.27	231.50	289.05	OP3-1L-DV50	OP3-WC05
	Short	104.65 - 142.75	88.90	127.43	187.45	OP4-1S-DV50	OP4-WC05
	Long	104.65 - 142.75	88.90	267.13	327.15	OP4-1L-DV50	OP4-WC05

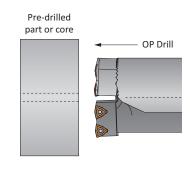
^{*}Holder includes cartridges; however, inserts are sold separately.

Cartridges

Replacement Cartridges	Qty. Inserts Needed	Mounting Screw	Key Size	Adjusting Screw	Driver
OP1-WC05	2	MS-13M-1	5 mm	AS-10T9-1	8T-9
OP2-WC05	2	MS-15M-1	5 mm	AS-10T9-1	8T-9
OP3-WC05	2	MS-15M-1	5 mm	AS-12T9-1	8T-9
OP4-WC05	3	MS-15M-1	5 mm	AS-14T9-1	8T-9

			Part No.				
Carbide					Insert		
Grade	Geometry	AM300®	AM200®	TiN	Screws*	Driver	
C5 (P35)	Standard	OP-05T308-P	OP-05T308-H	OP-05T308-T	IS-10-1	8T-9	
C1 (K35)	Standard	OP-05T308-1P	OP-05T308-1H	OP-05T308-1T	IS-10-1	8T-9	
C2 (K25)	Standard	OP-05T308-2P	OP-05T308-2H	_	IS-10-1	8T-9	
C5 (P35)	High Rake	OP-05T308-PHR	OP-05T308-HHR	-	IS-10-1	8T-9	

^{*}Admissible Tightening Torque: 15.5 in-lbs (175 N-cm). Tightening torques are calculated with a friction coefficient of μ = 0.14 and develop 90% of ultimate yield strength.


Recommended Cutting Data | Imperial (inch)

				Speed (SFM)		
		Hardness				Feed Rate
ISO	Material	(BHN)	AM300®	AM200®	TiN	(IPR)
	Free-Machining Steel 1118, 1215, 12L14, etc.	100 - 250	900 - 1300	850 - 1200	700 - 900	.0035007
	Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc.	85 - 275	850 - 1250	800 - 1150	650 - 850	.0030065
	Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc.	125 - 325	800 - 1050	750 - 950	600 - 850	.00350065
Р	Alloy Steel 4140, 5140, 8640, etc.	125 - 375	750 - 1000	700 - 900	600 - 850	.00350065
	High-Strength Alloy 4340, 4330V, 300M, etc.	225 - 400	600 - 850	550 - 750	400 - 650	.003005
	Structural Steel A36, A285, A516, etc.	100 - 350	850 - 1050	800 - 950	650 - 850	.0030065
	Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	150 - 250	400 - 800	350 - 700	250 - 650	.0025005
S	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	250 - 450	250 - 350	150 - 300	.0025005
	Stainless Steel 400 Series 416, 420, etc.	185 - 350	600 - 850	550 - 750	400 - 650	.003006
M	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	600 - 850	550 - 750	400 - 650	.003006
	Super Duplex Stainless Steel	135 - 275	500 - 750	450 - 650	300 - 550	.002005
К	Nodular, Grey, Ductile Cast Iron	120 - 320	700 - 900	650 - 800	500 - 700	.004008
	Cast Aluminum	30 - 180	1250 - 1650	1200 - 1550	950 - 1100	.006012
N	Wrought Aluminum	30 - 180	1250 - 1650	1200 - 1550	950 - 1100	.006012
	Brass	30 - 100	950 - 1350	900 - 1250	750 - 1100	.005009

Minimum Pilot Hole Diameter = Finish Diameter - C

Ex: To open an existing diameter hole to 2.75" diameter, an OP2 tool would be used. The minimum pilot hole diameter would be: 2.750 - 1.880 = 0.870"

Drill Diameter Range	С
2.00 - 2.50	1.880
2.50 - 3.00	1.880
3.00 - 4.12	1.880
4.12 - 5.62	2.680
	2.50 - 3.00 3.00 - 4.12

IMPORTANT: The speeds and feeds listed above are considered a general starting point for all applications. Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

THREADING

Formulas and Constants | Imperial (inch)

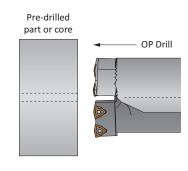
Material Constants

Type of Material	Hardness (BHN)	K _m (lbs/in²)	
Free-Machining Steel	100 - 250	0.75	
Low-Carbon Steel	85 - 275	0.85	
Medium-Carbon Steel	125 - 325	0.90	
Alloy Steel	125 - 375	1.00	
High-Strength Steel	225 - 400	1.15	
Structural Steel	100 - 350	1.00	
Tool Steel	150 - 250	0.90	
High-Temperature Alloy	140 - 310	1.44	
Titanium Alloy	140 - 310	0.72	
Aerospace Alloy	185 - 350	0.70	
Stainless Steel 400 Series	185 - 350	1.08	
Stainless Steel 300 Series	135 - 275	0.94	
Super Duplex Stainless Steel	135 - 275	0.94	
Wear Plate	400 - 600	1.60	
Hardened Steel	300 - 500	1.40	
Nodular, Ductile Cast Iron	120 - 320	0.65	
Grey Cast Iron	120 - 320	0.75	
Cast Aluminum	30 - 180	0.40	
Wrought Aluminum	30 - 180	0.40	
Aluminum Bronze	100 - 250	0.50	
Brass	100	0.35	
Copper	60	0.30	

Formulas

orm		
1.	RPM	= (3.82 • SFM) / DIA _F
	where:	
	RPM	= revolutions per minute (rev/min)
	SFM	= speed (ft/min)
	DIA_F	= finish diameter of drill (inch)
2.	HP	= $(0.5891 \cdot (DIA_F^2 - DIA_P^2) \cdot IPR \cdot RPM \cdot K_m) / 0.80$
	where:	
	Tool Power	= tool power (HP)
	DIA_F	= finish diameter of drill (inch)
	DIA_{P}	= pre-drill diameter (inch)
	IPR	= feed rate (in/rev)
	RPM	= revolutions per minute (rev/min)
	K _m	= specific cutting energy (lbs/in²)
		machine efficiency (using 0.80 as constant)
3.	Thrust	= 148,500 • IPR • (DIA _F − DIA _P) • K _m
	where:	
	Thrust	= axial thrust (lbs)
	IPR	= feed rate (in/rev)
	DIA_F	= finish diameter of drill (inch)
	DIA_P	= pre-drill diameter (inch)
	K _m	= specific cutting energy (lbs/in²)
4.	Torque	= (HP • 5252) / RPM
	where:	
	Torque	= torque (ft-lbs)
	HP	= tool power (HP)
	RPM	= revolutions per minute (rev/min)

The table and equations on this page are found in the *Machinery's Handbook*. Permission to simplify and print the equations is granted by the Editor of the *Machinery's Handbook*.


Recommended Cutting Data | Metric (mm)

			Speed (m/min)			
ISO	Material	Hardness (BHN)	AM300®	AM200®	Tin	Feed Rate (mm/rev)
	Free-Machining Steel	100 - 250	274 - 396	259 - 366	213 - 274	0.09 - 0.18
	1118, 1215, 12L14, etc.					
	Low-Carbon Steel	85 - 275	259 - 381	244 - 351	198 - 259	0.08 - 0.17
	1010, 1020, 1025, 1522, 1144, etc.					
	Medium-Carbon Steel	125 - 325	244 - 320	229 - 290	183 - 259	0.09 - 0.17
	1030, 1040, 1050, 1527, 1140, 1151, etc.					
P	Alloy Steel	125 - 375	229 - 305	213 - 274	183 - 259	0.09 - 0.17
	4140, 5140, 8640, etc.					
	High-Strength Alloy	225 - 400	183 - 259	168 - 229	122 - 198	0.08 - 0.13
	4340, 4330V, 300M, etc.					
	Structural Steel	100 - 350	259 - 320	244 - 290	198 - 259	0.08 - 0.17
	A36, A285, A516, etc.					
	Tool Steel	150 - 250	122 - 244	107 - 213	76 - 198	0.06 - 0.13
	H-13, H-21, A-4, 0-2, S-3, etc.					
	High-Temp Alloy	140 - 310	76 - 137	76 - 107	46 - 91	0.06 - 0.11
S	Hastelloy B, Inconel 600, etc.					
	Stainless Steel 400 Series	185 - 350	183 - 259	168 - 229	122 - 198	0.08 - 0.15
	416, 420, etc.	185 - 350	183 - 259	108 - 229	122 - 198	0.08 - 0.15
M	Stainless Steel 300 Series	135 - 275	183 - 259	168 - 229	122 - 198	0.08 - 0.15
IVI	304, 316, 17-4PH, etc.	133-273	163 - 239	108 - 229	122 - 198	0.08 - 0.13
	Super Duplex Stainless Steel	135 - 275	152 - 228	137 - 198	91 - 152	0.05 - 0.12
K	Nodular, Grey, Ductile Cast Iron	120 - 320	213 - 274	198 - 244	152 - 213	0.10 - 0.20
	Cast Aluminum	30 - 180	381 - 503	381 - 472	290 - 335	0.15 - 0.30
N	Wrought Aluminum	30 - 180	381 - 503	381 - 472	290 - 335	0.15 - 0.30
	Brass	30 - 100	290 - 411	274 - 381	229 - 335	0.13 - 0.23

Minimum Pilot Hole Diameter = Finish Diameter - C

Ex: To open an existing diameter hole to 69.85 mm diameter, an OP2 tool would be used. The minimum pilot hole diameter would be: 69.85 - 47.75 = 22.10

Drill Diameter Range	С
50.8 - 63.5	47.75
63.5 - 76.2	47.75
76.2 - 104.6	47.75
104.6 - 142.7	68.07
	50.8 - 63.5 63.5 - 76.2 76.2 - 104.6

IMPORTANT: The speeds and feeds listed above are considered a general starting point for all applications. Factory technical assistance is available for your specific applications through our Application Engineering department.

THREADING

Formulas and Constants | Metric (mm)

Material Constants

Type of Material	Hardness (BHN)	K _m (kPa)	
Free-Machining Steel	100 - 250	5.17	
Low-Carbon Steel	85 - 275	5.86	
Medium-Carbon Steel	125 - 325	6.21	
Alloy Steel	125 - 375	6.90	
High-Strength Steel	225 - 400	7.93	
Structural Steel	100 - 350	6.90	
Tool Steel	150 - 250	6.21	
High-Temperature Alloy	140 - 310	9.93	
Titanium Alloy	140 - 310	4.97	
Aerospace Alloy	185 - 350	4.48	
Stainless Steel 400 Series	185 - 350	7.45	
Stainless Steel 300 Series	135 - 275	6.48	
Super Duplex Stainless Steel	135 - 275	6.48	
Wear Plate	400 - 600	11.04	
Hardened Steel	300 - 500	9.66	
Nodular, Ductile Cast Iron	120 - 320	4.48	
Grey Cast Iron	120 - 320	5.17	
Cast Aluminum	30 - 180	2.76	
Wrought Aluminum	30 - 180	2.76	
Aluminum Bronze	100 - 250	3.45	
Brass	100	2.41	
Copper	60	2.07	

Formulas

1.	RPM	= (318.31 • m/min) / DIA _F
	where:	
	RPM	= revolutions per minute (rev/min)
	m/min	= speed (m/min)
	DIA_F	= finish diameter of drill (mm)
	I .	
2.	kW	= $((DIA_F^2 - DIA_P^2) \cdot mm/rev \cdot RPM \cdot K_m) / 205,154$
	where:	
	kW	= tool power (kW)
	DIA _F	= finish diameter of drill (mm)
	DIA_P	= pre-drill diameter (mm)
	mm/rev	= feed rate (mm/rev)
	RPM	= revolutions per minute (rev/min)
	K _m	= specific cutting energy (kPa)
		machine efficiency (using 205,154 as constant)
3.	Thrust	= 148.78 • mm/rev • (DIA _F − DIA _P) • K _m
	where:	
	Thrust	= axial thrust (N)
	IPR	= feed rate (mm/rev)
	DIA_{F}	Contral attended to Contra
	D17 1F	= finish diameter of drill (mm)
	DIA _P	= nnish diameter of drill (mm) = predrill diameter (mm)
	•	• •
4	DIA _P K _m	= predrill diameter (mm) = specific cutting energy (kPa)
4.	DIA _P K _m	= predrill diameter (mm)
4.	DIA _P K _m Torque where:	= predrill diameter (mm) = specific cutting energy (kPa) = (kW • 9549.3) / RPM
4.	DIA _P K _m	= predrill diameter (mm) = specific cutting energy (kPa) = (kW • 9549.3) / RPM = torque (Nm)
4.	DIA _P K _m Torque where: Torque	= predrill diameter (mm) = specific cutting energy (kPa) = (kW • 9549.3) / RPM

The table and equations on this page are found in the *Machinery's Handbook*. Permission to simplify and print the equations is granted by the Editor of the *Machinery's Handbook*.

Guaranteed Test / Demo Application Form

Distributor	PO #	

The following must be filled out completely before your test will be considered.

IMPORTANT: For processing, send purchase order to your Allied Field Sales Engineer (FSE). Please clearly mark the paperwork as "Test Order."

Distributor Information End User Information Company Name: Company Name: Contact: Contact: Account Number: Industry: Phone: Phone: Email: Email: Current Process List all tooling, coatings, substrates, speeds and feeds, tool life, and any problems you are experiencing. **Test Objective** List what would make this a successful test (i.e. penetration rate, finish, tool life, hole size, etc.). **Application Information** Hole Diameter: ____ in/mm Tolerance: Material: (4150, A36, cast iron, etc.) Preexisting Diameter: ___ in/mm Depth of Cut: _ __ in/mm Hardness: (BHN, Rc) Required Finish: ____ RMS State: (Casting, hot rolled, forging) **Machine Information** Machine Type: Builder: _ Model #: ___ (Lathe, screw machine, machine center, etc.) (Haas, Mori Seiki, etc.) Shank Required: Power: _____ HP/KW (CAT50, Morse taper, etc.) Thrust: Rigidity: Orientation: Tool Rotating: lbs/N ☐ Excellent ☐ Vertical Yes ☐ Horizontal ☐ No Good Poor **Coolant Information** Coolant Delivery: (Through tool, flood) Coolant Type: Coolant Volume: (Air mist, oil, synthetic, water soluble, etc.)

Requested Tooling

QTY	Item Number

QTY	Item Number

Allied Machine & Engineering 120 Deeds Drive Dover, OH 44622

Telephone: (330) 343-4283
Toll Free USA & Canada: (800) 321-5537
Email: info@alliedmachine.com

Warranty Information

• • • • •

Allied Machine & Engineering ("Allied Machine") warrants to original equipment manufacturers, distributors, industrial and commercial users of its products for one year from the original date of sale that each new product manufactured or supplied by Allied Machine shall be free from defects in material and workmanship.

Allied Machine's sole and exclusive obligation under this warranty is limited to, at its option, without additional charge, replacing or repairing this product or issuing a credit. For this warranty to be applied, the product must be returned freight prepaid to the plant designated by an Allied Machine representative and which, upon inspection, is determined by Allied Machine to be defective in material and workmanship.

Complete information as to operating conditions, machine, setup, and the application of cutting fluid should accompany any product returned for inspection. This warranty shall not apply to any Allied Machine products which have been subjected to misuse, abuse, improper operating conditions, improper machine setup or improper application of cutting fluid or which have been repaired or altered if such repair or alteration, in the judgement of Allied Machine, would adversely affect the performance of the product.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Allied Machine shall have no liability or responsibility for any claim, whether in contract, tort or otherwise, for any loss or damage arising out of, connected with, or resulting from the manufacture, sale, delivery or use of any product sold hereunder, in excess of the cost of replacement or repair as provided herein.

Allied Machine shall not be liable in contract or in tort (including, without limitation, negligence, strict liability or otherwise) for economic losses of any kind or for any special, incidental, indirect, consequential, punitive or exemplary damages arising in any way out of the performance of, or failure to perform this agreement.

ALL PRICES, DELIVERIES, DESIGNS, AND MATERIALS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Wohlhaupter GmbH is registered to ISO 9001:2015 by QUACERT.

Allied Machine & Engineering Co. Europe Ltd. is registered to ISO 9001:2015 by bsi.

United States

Allied Machine & Engineering

120 Deeds Drive Dover OH 44622 United States Phone:

+1.330.343.4283

Toll Free USA and Canada:

800.321.5537

Toll Free USA and Canada:

800.223.5140

Allied Machine & Engineering

485 W Third Street Dover OH 44622 United States Phone:

+1.330.343.4283

Toll Free USA and Canada:

800.321.5537

Europe

Allied Machine & Engineering Co. (Europe) Ltd

93 Vantage Point Pensnett Estate Kingswinford West Midlands DY6 7FR England Phone:

+44 (0) 1384 400 900

Wohlhaupter® GmbH

Maybachstrasse 4 Postfach 1264 72636 Frickenhausen Germany Phone:

+49 (0) 7022 408-0

Asia

Wohlhaupter® India Pvt. Ltd.

B-23, 3rd Floor B Block Community Centre Janakpuri, New Delhi - 110058 India Phone:

+91 (0) 11.41827044

Your local Allied Machine representative:

www.alliedmachine.com

Allied Machine & Engineering is registered to ISO 9001:2015 by DQS. Wohlhaupter GmbH is registered to ISO 9001:2015 by QUACERT. Allied Machine & Engineering Co. (Europe) Ltd is registered to ISO 9001:2015 by bsi.

